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‡ Universitätsklinik für Psychiatrie und Psychotherapie, Osianderstrasse 24, D-72076 Tübingen,
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Abstract. Many natural neural systems are functionally or hierarchically organized into
interacting ensembles of neural populations. To investigate the dynamics in a hierarchical system
of coupled bistable van der Pol oscillators we apply the bi-orthogonal decomposition into empirical
orthogonal spatial and temporal modes. Within this method the dynamics and synchronized patterns
are characterized by global, temporal and spatial entropy and energy. Different states of the
network activity are identified as synchronous or asynchronous dynamics induced by external
periodic input. Of particular interest is the ability of the bi-orthogonal decomposition to detect
bifurcations following variations of the system parameter. Bifurcations correspond to crossings of
the eigenvalues where an exchange of dominant modes takes place. In our simulations we observe
a bifurcation induced by variations of input frequency and strength, identified as a saddle-node
bifurcation of the unstable/stable pair of limit cycles.

1. Introduction

In systems of identical or nearly identical interacting subsystems cooperative and competitive
phenomena are observed that are emergent properties of the system. Of particularly interest
are systems based on analogies with neural networks. Their neuro-computational properties
are expected to enable the design of new devices for applications in pattern recognition, signal
analysis, associative memory and system control.

Our study is motivated by biological networks displaying rhythmic behaviour, such as
the neocortex, hippocampus or olfactory bulb. Those networks have a functional organization
based upon interactions within and among small populations of neurons. A common architec-
tural feature of many natural neural systems is an anatomically distributed organization, hence
neural computation requires that distinct structures communicate in a coordinated and modifi-
able fashion. Experimental evidence suggests that synchronous oscillations in the brain may be
used to coordinate information processing in the nervous system [1]. Hence, an understanding
of how oscillatory activity and transitions between different oscillatory states in neural networks
arise is important for understanding the neuro-computational properties of such systems.

Oscillatory neural networks provide new paradigms for neural computation: neural
oscillators are sensitive to the fine temporal structure (phase) of incoming signals (pulse trains).
Like Hopfield networks, an oscillatory network possesses the ability of high-level cognitive
functions, such as associative memory and pattern recognition. Memorized patterns in
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oscillatory neural networks correspond to synchronized states with prescribed phase relations.
Pattern recognition is related to phase locking and associative recall by self-organization of
the network [2–6]. Recently, Terman and Wang [7, 8] proposed a novel neural architecture
based on competition and cooperation between locally excitatory and globally inhibitory
populations of relaxation oscillators. They assumed that perceptual organization is based on the
representation of oscillatory correlation: each object is represented by a synchronized oscillator
population corresponding to the object and different objects are represented by different
oscillator populations which are desynchronized from each other. Terman and Wang proved
that global synchronization is a robust property of the local coupling. The global inhibitory
mechanisms produced rapid desynchronization among different oscillator groups. Within this
framework they solved computational problems such as image segmentation or object selection.

Oscillatory neural networks for pattern recognition, processing and storage could be
implemented, for example, as electronic circuits based on classical neuronal oscillators, phase-
locked loop (PLL) circuits, optical (laser) oscillators, superconducting Josephson junction
oscillators or micro-electromechanical systems (MEMS). Micro-electromechanical systems
are miniature mechanical systems, which are integrated with CMOS electronics [9–11].
Typically, MEMS are used for wireless communication and signal processing [12, 13]. The
mechanical part senses external, non-electronic signals, such as for example barometric
pressure, temperature, acceleration, vibration, etc, and the electronic part digitizes and
processes the signals. The main part is the MEMS resonator, a polycrystalline silicon oscillator.
Such an oscillator is described by

mẍ + f (x)ẋ + g(x) = 0 (1)

where x denotes the displacement of the shuttle of the MEMS resonator from the rest position
x = 0. The constant m is its effective mass, and f (x) and g(x) describe the damping and
stiffness functions. Their exact form depends on the properties of the materials and details of
the feedback loop circuitry (see [10] for detailed information about the electro-mechanics of
MEMS). Second-order equations of the form (1) are known as Liénard equations, which are a
generalization of the van der Pol oscillator.

In this paper we study dynamics and pattern formation in a hierarchical network of coupled
bistable van der Pol oscillators. Bistability naturally arises in natural and artificial information
processing systems, allowing coexisting attractors and transitions between different states of
activity. To measure synchronization and disorder in distributed neural networks we apply the
bi-orthogonal decomposition into empirical orthogonal spatial and temporal modes [14, 15].
The bi-orthogonal decomposition characterizes the dynamics by global, temporal and spatial
entropy and energy. Previously, we applied this method on networks composed of Hopf-type
oscillators and FitzHugh–Nagumo neural oscillators [16–18]. We found that the characteristic
quantities of the bi-orthogonal decomposition are adequate parameters to characterize the com-
plex dynamics of coupled nonlinear oscillators and neural networks. Different states of network
activity can be identified as synchronous or asynchronous activity [16–18]. In addition, the bi-
orthogonal decomposition detects bifurcations following variations of the system parameters.

2. An oscillatory neural network

2.1. The bistable van der Pol oscillator

Motivated by bistable MEMS oscillators [6, 19] in the following we study a network composed
of van der Pol oscillators:

ẍ + ϕ(x)ẋ + ω2x = 0.
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To obtain bistable dynamics, e.g. a rest state and an oscillating state which are simultaneously
stable for the same set of parameters, the nonlinear damping term ϕ(x) is replaced by a fourth-
degree polynomial, i.e

ẍ +
(
ε1 − x2

) (
ε2 − x2

)
ẋ + ω2x = 0. (2)

The bifurcation analysis of (2) was investigated in detail elsewhere [20]. We recall that in the
weakly nonlinear limit, i.e. ε1, ε2 � 1, for ε2 > (3 +

√
8)ε1 and 0 < ε1ε2 � ω we obtain an

attractive fixed point at the origin and a pair of stable/unstable limit cycles with radii

ru,s =
(

1

ε1ε2

[
ε1 + ε2 ± (

ε2
1 + ε2

2 − 8ε1ε2
)1/2

])1/2

. (3)

2.2. Network topology

The topology (see figure 1) of our network is organized as a chain of eight clusters of oscillators,
each cluster containing 16 oscillators. Within each cluster the oscillators are identical, and
the internal coupling is global (all-to-all). In analogy with ‘realistic’ neuronal networks, the
oscillators of each cluster are linked through activatory or inhibitory connections [17, 18]. The
couplings are chosen as linear and symmetric over the y-components, i.e.

ẋi = yi

ẏi = (
x2 − ε1

) (
ε2 − x2

)
yi − ω2xi +Ki.

Depending on the sign of the coupling term Ki , each cluster consists of four inhibitory and
12 excitatory oscillators, e.g. in the brain 10–25% of the neurons are inhibitory local circuit
neurons. For an inhibitory oscillator i the coupling is given by

Ki = knn

N − 1

N∑
k �=i

yk +
knp

P

P∑
j

yj + kinpyinp (4)

with knn < 0 and kpn > 0. Here N labels the inhibitory and P labels the excitatory elements
within a single cluster. All inhibitory and four excitatory oscillators receive external input,
which is provided by an additional oscillator with frequency ωinp and coupling strength kinp.
Within each cluster four excitatory oscillators are coupled to the corresponding oscillators of
the neighbouring clusters. Thus, for both types of excitatory oscillators we have

Ki = kpp

P − 1

P∑
k �=i

yk +
knp

N

N∑
j

yj + kyl (5)

with kpp > 0 and knp < 0. The index l denotes both an external oscillator, i.e. k = kinp > 0,
or an oscillator l from a neighbouring cluster, i.e. k = kcc > 0. Finally, the coupling terms of
the remaining purely internal coupled oscillators are

Ki = kpp

P − 1

P∑
k �=i

yk +
knp

N

N∑
j

yj (6)

with kpp > 0 and knp < 0. Due to the different coupling terms the system may be regarded as
consisting of four different types of oscillators. According to the topology described above, the
labelling of the oscillators is organized as follows: the oscillators 0–31 are inhibitory elements,
32–63 are excitatory elements, both with external input, 64–91 are excitatory elements with
input from the neighbouring cluster and 92–127 are the remaining excitatory elements. In the
figures we denote these types (in the same order as above) with capital letters A–D.
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Figure 1. Schematic network topology. Organized as a chain of clusters of coupled oscillators, each
circle represents an oscillator population as defined by the network connectivity: the population
(A) are inhibitory oscillators and the populations (B)–(D) are exitatory oscillators. An external
input is received by the populations (A) and (B). The population (C) provides interactions between
neighbouring clusters.

3. Spatio-temporal data analysis

3.1. The bi-orthogonal decomposition

The decomposition into orthogonal modes is a well known procedure in signal analysis.
A signal can be decomposed and represented in a new basis, such as via a Fourier or
wavelet transform. Instead of using a predefined basis, the basis can be generated by
the signal itself, which is referred to as empirical orthogonal decomposition, Karhunen–
Loève transformation, singular-value decomposition or principal-component analysis. The
bi-orthogonal decomposition is a spatio-temporal extension of the Karhunen–Loève
transformation for the identification of coherent structures in turbulent systems and consists
of a decomposition into spatial and temporal orthogonal modes [14, 15]. We refer to [14]
for theoretical details of the method. Here we recall some notation and summarize the main
results in the context of coupled oscillators. Any complex signal u(z, t) on two variables may
be decomposed uniquely as

u(z, t) =
N∑
n=1

αnψn(t) ϕn(z) (7)

where α1 � α2 � · · ·αN � 0 are the so-called singular values and ϕn and ψn are orthogonal
functions [14]. The signal can then be identified with a linear operator U : L2(T ) → L2(Z).
Here, L2(T ) consists of functions t → ψ(t) over the time domain. Formally, one may
also consider t to be a continuous variable. In these cases ψ(t) has to be square integrable.
Analogously, L2(Z) is the space of functions z → ϕ(z). The spatial and temporal
eigenfunctions ϕn(z) and ψn(t) satisfy (ϕk, ϕl) = (ψk, ψl) = δkl and are eigenfunctions
of, respectively, L = UtU and R = UUt , which are non-negative, self-adjoint operators in
L2(Z) and L2(T ) and represent the spatial and temporal correlation matrices of the signal.
The corresponding eigenvalues are then just the squares of the singular values, i.e.

Lϕn = α2
nϕn Rψn = α2

nψn.

Due to the spatio-temporal symmetry of the decomposition, i.e. Lt = R, the eigenvalues α2
k

are the same for both temporal and spatial eigenfunctions. The products ϕnψn are therefore
referred to as independent coherent structures that compose the signal. The analysis of the
signal then corresponds to the spectral analysis of the operator U associated with the signal
u(z, t).
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Given a system of Ñ coupled oscillators with an individual oscillator consisting of s
components, we interpret the evolution of the system as a spatio-temporal signal u(x, t).
Here, x ∈ X = {x1, . . . , xN } labels both the location and the component of an oscillator,
i.e. X plays the role of the spatial domain. For our system, Ñ = 128 and s = 2, hence
N = sÑ = 256. Since the time evolution is determined by numerical integration, the time
domain is also discrete, t ∈ T = {t1, . . . , tM}. When the data u(x, t) are arranged in the form
of an M × N matrix, in our case N is less than M , the spectrum consists of N non-negative,
singular values αn.

3.2. Entropy, energy and dimension

Three types of characteristic quantities can be extracted from the bi-orthogonal decomposition:
entropy, energy and dimension. The information content of a signal can be estimated by the
entropy, which measures the degree of order of the spatio-temporal components of the signal.
The global mode entropy is defined by

S(u) = − 1

lnN

N∑
k=1

pk lnpk (8)

with

pk = α2
k∑N
k α

2
k

.

The temporal and spatial entropies are defined by

ST (x) = − 1

lnN

N∑
k=1

pk(x) lnpk(x) (9)

SX(t) = − 1

lnN

N∑
k=1

pk(t) lnpk(t) (10)

where

pk(x) = αk|ϕk(x)|∑N
k αk|ϕk(x)|

pk(t) = αk|ψk(t)|∑N
k αk|ψk(t)|

.

The entropies are normalized by 0 � S � 1. The amount of the global entropy depends on the
number of non-zero eigenvalues. The entropy is maximal, S = 1, if all eigenvalues are equal,
i.e. pk = 1/N . If there is exactly one non-zero eigenvalue, that is, the energy is characterized
by the first eigenmode alone, the entropy S will be zero.

The square norm of the signal in L2(X × T ) defines the global energy

E(u) =
∑
x,t

u(x, t)2 =
N∑
k=1

α2
k (11)

as the sum of the eigenvalues. The spatial and temporal energies are defined as

EX(t) =
∑
x

u(x, t)2 =
N∑
k=1

α2
k |ψk(t)|2 (12)

and

ET (x) =
∑
t

u(x, t)2 =
N∑
k=1

α2
k |ϕk(x)|2. (13)
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Since the bi-orthogonal decomposition is generated from a solution u(x, t) of a dynamical
system, the eigenfunctions and eigenvalues contain information on the attractor of the system.
Hence one could formally define a global dimension as the dimension of the range of U , i.e.
dim � N , which is the effective number of degrees of freedom of the signal. However, the
number of non-zero eigenvalues is the dimension of the smallest linear subspace containing
the dynamics and consequently only an upper bound for the fractal or correlation dimension
of the attractor. For our study we use the working definition that the dimension is given by
the number of actual eigenfunctions required so that the captured energy is at least 90% of the
total energy.

4. Simulations

For all oscillators within the network we choose the parameters ε1 = 0.1, ε2 = 0.6 andω = 1.0
out of the bistable regime. External input is provided by oscillators with parameters ε1 = −0.1
and ε2 = 0.8. The coefficients for the coupling strengths are given by kpp = −knn = 0.01,
knp = −kpn = −0.02 and kcc = 0.02. To minimize boundary effects, the couplings between
clusters 1 and 2, 7 and 8 are set to kcc/4 and between clusters 2 and 3, and 6 and 7 to kcc/2.

The stable steady-state solution is xi = 0, yi = 0 for all i. Since we are interested in
oscillatory solutions, we choose random starting values for ri = (x2

i + y2
i )

1/2 from the interval
[0.8, 1.2], which is the basin of attraction for the stable limit cycle of the free oscillator. The
phases are chosen randomly out of the interval [0, π/2].

We investigated the dynamics while the frequency of the external oscillator was varied
from ωinp = 0.1 to ωinp = 3.5 with a step width of 0.01 and the external coupling strength
was varied from kinp = 0.1 to 1.0 with a step width of 0.1. The numerical integration was
performed using a Runge–Kutta algorithm with an adaptive step size. For the calculations of
the global characteristics and the bi-orthogonal decomposition the system was first integrated
for a transient time of 1000 time steps (t1 = 0 to t2 = 1000). Then from t2 = 1000 to t3 = 1300
the calculated values were stored at 512 equidistant time steps to obtain a spatio-temporal time
series, which was used for further analysis.

4.1. Dynamics without external input

The dynamics of globally coupled bistable oscillators or systems with nearest-neighbour
couplings (such as chains and arrays) is well understood [20–22]. The bistability may result
in non-trivial spatio-temporal dynamics. Depending on the choice of parameter values and
initial conditions the network without external input also shows different types of collective
behaviour. For purely excitatory couplings the network totally synchronizes in-phase after
a short transient. The global energy is maximal for this case (E = 148.6). Incorporating
different inhibitory connectivity the network remain synchronized, but typically we found
antiphase synchronization either between the excitatory and inhibitory populations, or between
a single cluster and the other clusters. We also observed a lower amount of global energy. In
contrast, global entropy and dimension are almost constant, i.e. S ≈ 0.13 and dim = 2.

This behaviour in the absence of external input can be explained by the ability of coupled
oscillators near Hopf bifurcation to synchronize, which is discussed in detail in [2]. Applying
the transformation ωy = −ẋ − φ(x) we obtain a first-order differential equation in Liénard
form

ẋ = −ωy − φ(x)

ẏ = − 1

ω

[
ẍ + φ′(x)ẋ

] = ωx
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with

φ(x) =
∫ x

0
ds ϕ(s) = ε1ε2x − 1

3 (ε1 + ε2)x
3 + 1

5x
5.

An energy estimate for the uncoupled equations is provided by

d

dt
1
2

(
x2 + y2

) = −x2
[
ε1ε2 − 1

3 (ε1 + ε2)x
2 + 1

5x
4
]
.

From this we can easily find a Lyapunov function for the network which guarantees the
existence of stable attractors and the asymptotic behaviour to recall memorized patterns (see
[9]).

4.2. Synchronized and desynchronized patterns induced by external input

The onset of external input changes the global activity of the network, which can be observed in
figure 2 in the plots for global energy and entropy, E(ωinp, kinp) and S(ωinp, kinp), respectively.
We can observe three main regions of the dynamics: the main resonance ωinp/ω = 1,
subharmonic resonances and higher harmonic resonances. In the main resonance atωinp/ω = 1
global entropy and dimension are minimal. Since synchronized states are characterized
by minima of the global entropy S(kinp, ωinp), respectively, maxima of the global energy
E(kinp, ωinp), for resonant input the network behaves as without external input. The dimension
is dim = 2 and the global entropy S ≈ 0.13. The global energy increases with external input
strength.

Subharmonic resonances can be observed at ωinp/ω = 0.34 and 0.22, as well as higher
harmonics at multiples of the resonance frequency. In all resonances the global entropy has
a global or local minimum, indicating a high degree of coherence. Close to the resonances
the global entropy increases, indicating disordered or chaotic activity. Increasing the strength
of internal couplings, the synchronized range of the main resonance broadens (see figure 3),
which can be explained by the shape of the entrainment domains (‘Arnold tongues’) for coupled
nonlinear oscillators [23, 24]. We can also observe a local minima of the global entropy near
the main resonance, which will be studied in the next section.

For input frequencies ωinp > ω we observe an increase of global entropy for increasing
input strength until kinp ≈ 0.5. For stronger input the entropy decreases again. We omit
further details on synchronized and desynchronized patterns, since this was studied in detail in
our previous work [16–18]. Note that for resonant input the network has the properties of an
oscillatory associative memory. Dephased input on the excitatory and inhibitory populations
results in dephasing the different populations. The phase relationships depend on the choice
of the connection matrix. Generally, for all parameter values the dynamics converges to an
attractor, random initial conditions for fixed parameter result in the same oscillatory patterns.

4.3. Bifurcations

We can use the global entropy as an order parameter allowing to locate and follow bifurcations
[15]. The variation of the global entropy as a function ωinp and kinp is well understood from the
theoretical finding that the entropy can be increased by internal or external bifurcations. Internal
bifurcations are characterized by a constant dimension. The resulting peculiar dynamics is
explained by rotations of the space and time eigendirections in the degenerate eigenspaces and
a reordering of the coherent structures. In contrast, external bifurcations are characterized by
an increase of dimension. Bifurcations are observed as mode crossings of the eigenvalues,
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Figure 2. Global energy E and entropy S for varying external input frequency ωinp and input
strength kinp.

giving rise to an exchange of the coherent structures. New modes may became dominant and
more modes are simultaneously active.

This can be observed in figure 3 where the four dominant eigenvalues are shown. In
figures 2 and 3 we can observe that mode crossings occur for . = ωinp − ω ≈ kinp. This is in
good agreement with our theoretical predictions for two coupled oscillators near degenerate
Hopf bifurcation. In the bistable range the unstable/stable pair of limit cycles may coalesce and
vanish as a result of detuning the frequencies of the oscillators or by varying coupling strength
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Figure 3. Dominant eigenvalues αi(ωinp) for (a) external input strength kinp = 0.1, (b) external
input strength kinp = 0.5. In (c) and (d) we show the dominant eigenvalues for (c) external input
strength kinp = 0.1, and (d) external input strength kinp = 0.5 for increased internal couplings
kpp = knn = 0.1, knp = −kpn = −0.2, and kcc = 0.2.

Figure 4. Oscillatory patterns yi(t) for one oscillator of each population at kinp = 0.5 and (a)
ωinp = 1.4, (b) ωinp = 1.6

[25]. We can observe mode crossings which corresponds to this bifurcation, for example, for
kinp = 0.5 in the range between ωinp = 1.5 and 1.6. For ωinp = 1.5 the eigenvalues α3 and α4

are degenerate, then α3 increases and α4 decreases. For ωinp > 1.6 α2 and α3 are degenerate.
An increase of the internal coupling strengths does not change the qualitative dynamics (see
figures 3(c) and (d). Increasing the coupling strengths between oscillators of population D no
mode crossings were observed for weak external input, i.e. kinp � kcc, due to the competition
between external input and input from the neighbouring clusters.
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Figure 5. (a) Temporal energy and (b) temporal entropy for kinp = 0.5 and ωinp = 1.4. (c)
Temporal energy and (d) temporal entropy for kinp = 0.5 and ωinp = 1.6. For ωinp = 1.4 the
different populations show a high degree of coherence. The loss of coherence for ωinp = 1.6
indicate irregular or chaotic dynamics.

A detailed analysis of the network dynamics near the mode crossings shows that the
temporal energy decreases, indicating a decrease in the amplitudes of the oscillators (see
figures 4 and 5). At ωinp = 1.5 the oscillators of population D contribute especially to the
qualitative change of the dynamics, they cease to oscillate with small-amplitude fluctuations
near their stable rest states. The spatial entropy increases, indicating increasing disorder or
desynchronization. We can observe two main regimes of the dynamics under non-resonant
input. Generally, the oscillators receiving external input adapt the frequency of the external
forcing. Depending on the state of population D, i.e. oscillatory or at rest, there is regular or
chaotic dynamics of the input populations A and B. The oscillators of population C show the
most regular behaviour. They oscillate with their intrinsic frequencies without any significant
amplitude modulations. The additional cluster–cluster connections seem to stabilize this
population. The distribution of the spatial energies of population C in figures 5(a) and (c)
reflects the symmetry properties of the network, i.e. the decaying coupling strengths towards
the network boundaries. This, in turn, may explain the fact that some oscillators of this
population show small-amplitude fluctuations as a boundary effect.

4.4. Low-dimensional dynamics

From the bi-orthogonal decomposition we obtain a network dynamics which is governed by
a low-dimensional dynamical system. Both the unforced network and synchronized states
under external input are characterized by two eigenmodes containing about 98% of the global
energy and minimal global entropy. Depending on the input frequency and coupling strength
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the dimension varies between dim = 2 and 8. Increasing the number of oscillators within each
cluster does not change the network dynamics. The numerical values of global entropy and
energy vary with network size and parameter values. However, modifying the network size
by incorporating additional clusters even in different organizational schemes such as larger
chains or two-dimensional arrays of clusters does not change the qualitative spatio-temporal
properties of the network.

5. Summary and discussion

Weakly connected neuronal oscillators near Hopf bifurcation are sensitive to the timing of
incoming signals [2]. The phase of one oscillator can affect the other only when both oscillators
have resonant frequencies. As a result, oscillators with different frequencies do not interact
via phase deviations even though they are interconnected. Therefore, in order to achieve
communication between two neural oscillators they must establish a common frequency
of transmission. Thus, an oscillator can interact selectively with other oscillators having
appropriate frequencies. External input can serve to dynamically connect or disconnect two
oscillators [4, 25].

The main findings of our investigations are that depending on the detuning between internal
frequency and input frequency, external input with an appropriate frequency and strength
results in asynchronous network dynamics. In addition, by applying the bi-orthogonal spectral
decomposition on the spatio-temporal data obtained from the network, we can detect saddle-
node bifurcations of the unstable/stable pair of limit cycles in larger ensembles of bistable
oscillators by varying input frequency and strength. As shown previously for two coupled
oscillators near degenerate Hopf bifurcation [25], this behaviour can be observed just below
the critical coupling for synchronization and results in an attraction of the dynamics to the stable
steady state. In contrast to the Hopf-type oscillators used in [16], some results may be explained
by the relaxation nature of the oscillation. Relaxation oscillators typically synchronize in-phase
and can also interact for low-order resonant frequencies. This may explain the increasing global
energy for subharmonic resonances.

These properties are of great importance in artificial and biological signal processing
systems. The biological relevance of the presented network is discussed in detail in [16]. We
note that our network may serve as an abstract thalamo-cortical system, providing an input
layer receiving sensory information and a layer of cortical columns. In a real cortex the cortical
columns have output layers with feedback connections from cortical neurons to the reticular
nucleus of the thalamus. These feedback connections are not implemented in the present
network, however, their effects on the network dynamics may be briefly considered. The
reticular cells inhibit thalamic relay cells supplying adjacent cortical columns, thus forming a
large system of multiple parallel loops (thalamic relay cells, cortical column, reticular thalamic
cells, thalamic relay cells). Adjusting the internal and external coupling strength in our network
determines the sensitivity of these loops to input frequency. A non-resonant input results in
the observed bifurcation in population D. Using this population as an output layer, it provides
feedback for resonant input which may allow us to implement mechanisms for gating of
information or selective attention. Thus we expect to obtain similar computational properties
of the network presented here to those of the networks proposed by Terman and Wang [7, 8].
This will be the subject of further investigations.

The bi-orthogonal decomposition is a useful tool in analysing the dynamics of coupled
nonlinear oscillators even in heterogeneous topologies and intermediate ensembles. Besides
insight into the dynamics and bifurcations of the system, the low-dimensional description by
the bi-orthogonal decomposition provides advantages for a detailed analysis using simplified
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systems (see, for example, [16]). It may also be useful in designing and optimizing networks
by finding a suitable size for given applications. Computer simulations give easy access to
parameter values, initial conditions and the evolution of the system. Since the method is based
on spatio-temporal data obtained from the system, it may also be used for experimental data,
i.e. for testing and quality control of hardware implementations such as, for example, of MEMS
oscillators. Using bistable oscillators for neural network simulations and applications provides
the possibility for a more biologically realistic description of neuronal activity. They may also
enable the design of interfaces between new oscillatory neural networks and classical, binary
computer systems. An advantage of using relaxation oscillators to perform computational tasks
is their ability of rapid synchronization, mediated by the so-called fast threshold modulation
[26].
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[17] Schwarz J, Stevens A, Bräuer K and Bartels M 2000 Patterns of complexity and coherent oscillations in a thalamo-

cortical network model Chaos in Brain? ed K Lehnartz et al (Singapore: World Scientific) pp 238–42
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